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Abstract—In this paper we propose an algorithm to construct
a “space �lling” curve for a sensor network with holes. Mathe-
matically, for a given multi-hole domain R , we generate a path
P that is provably aperiodic (i.e., any point is covered at most
a constant number of times) and dense (i.e., any point ofR
is arbitrarily close to P ). In a discrete setting as in a sensor
network, the path visits the nodes with progressive density, which
can adapt to the budget of the path length. Given a higher
budget, the path covers the network with higher density. With
a lower budget the path becomes proportional sparser. We show
how this density-adaptive space �lling curve can be useful for
applications such as serial data fusion, motion planning for data
mules, sensor node indexing, and double ruling type in-network
data storage and retrieval. We show by simulation results the
superior performance of using our algorithm vs standard space
�lling curves and random walks.

I. I NTRODUCTION

We consider a sensor network that densely covers a planar
domain, possibly with multiple network holes. In this paperwe
develop algorithms to linearize the network, i.e., `covering' the
sensor network by a single path. By enforcing a linear order
of the sensor nodes one can carry serial logical de�nitions and
serial operations on both the sensor nodes and the sensor data.
We list a number of such applications in the following.

Serial data fusion.When a signal is spread over an area larger
than the coverage range of a single sensor, we will need to use
multiple sensors to collaboratively detect the distributed signal.
One type of data fusion mechanisms, calledserial fusion[5],
[29], combines sensor observations in a linear fashion to derive
hypothesis. A state is maintained and passed on from sensor
to sensor along a serial path, incorporating new observation at
each step. This is in contrast withparallel fusionmechanism
in which sensors independently process their data and pass the
output to a centralized fusion center. There are pros and cons
for serial fusion v.s. parallel fusion respectively. One particular
advantage of serial fusion is that the fusion process can be
stopped as long as there is enough evidence to support or
reject the hypothesis, while in parallel fusion all data will be
sent to the fusion center nevertheless. The implementationof
the serial data fusion in a distributed network requires a path
that visits all the nodes in a linear order [20].

Motion planning of data mules. Collecting data from sensor
networks to a static data sink often suffers from communica-
tion bottleneck near the sink. One way to address this is to use
a mobile sink, or called a data mule, implemented by a mobile
device touring around the network to collect data through

direct communication with a sensor in close proximity. Besides
collecting sensor data, a data mule can also be helpful for
sensor network maintenance such as battery recharge, beacon-
based localization [3], [13], etc. A data mule moves along a
path. Planning the motion of a data mule requires a path that
visits the nodes in the network with minimum duplicate visits.
When there are multiple data mules in the network, a �exible
set of paths that can be used by the data mules with minimum
coordination and minimum interference (e.g duplicate visits
by different mules) will be handy.
Sensor node indexing.Another application of representing a
sensor network by a linear order is for indexing sensor nodes
or sensor data [14]. A number of indexing schemes for multi-
dimensional input �rst take a space �lling curve to `linearize'
the input and then apply standard 1D indexing mechanisms.

In the following we �rst review previous work of linearizing
a two dimensional continuous domain or a discrete two
dimensional network, before we present our ideas.

A. Related Work

Space �lling curves. In the continuous setting, various space
�lling curves have been de�ned for a square region [21].
The narrow de�nition of space �lling curve, in mathematical
analysis, refers to a curve whose range contains the entire2-
dimensional unit square (or more generally anN -dimensional
hypercube). Space �lling curves were initially discoveredby
Giuseppe Peano and are also called Peano curves. These
curves are often recursively constructed. See Figure 1 for an
instance of the Hilbert curve. The basic recursive structure is to
replace a line segment by a zig-zag pattern. In a recursive step,
each segment is replaced by a scaled and rotated version of this
pattern. The larger number of recursions used, the denser the
curve becomes. Mathematically every point of the unit square
is on the curve, given an in�nite number of recursions. For
a discrete set of points it suf�ces to take a suf�ciently high
number of recursions to generate a linear order of the points.
Space �lling curves in this narrow de�nition only apply to2-
dimensional (orN -dimensional) unit squares (hyper-cubes).
When the domain is irregular and/or has holes the space
�lling curve will be chopped into many disconnected pieces.
Very little work is known about extending the space �lling
curves to other shapes. The only work known is a heuristic
algorithm [11] with a modi�ed Hilbert curve for an ellipse.
Hamiltonian paths. In a discrete setting such as a graph,
a natural analog of a space �lling curve is a Hamiltonian



Fig. 1: The Hilbert curve (source: Wikipedia).

cycle or a Hamiltonian path, i.e., a cycle or a path that visits
each vertex once and only once. Only a subset of graphs has
a Hamiltonian path and determining whether a Hamiltonian
path or a Hamiltonian cycle exists in a given graph (whether
directed or undirected) is NP-complete, even in restricted
families such as planar graphs [7].

Traveling salesman tour.When a metric is de�ned between
any two nodes, the traveling salesman problem (TSP) asks for
the shortest tour that visits each node once and only once. In
our setting the distance between two nodes can be either the
graph distance or the Euclidean distance. The latter becomes
the Euclidean TSP. Both the metric TSP and the special case
of Euclidean TSP are NP-complete. For the metric TSP, the
heuristic of using the Euler tour on the minimum spanning
tree gives a two-approximation. With some additional tricks,
the Christo�des algorithm [6] gives a3=2 approximation.
For the Euclidean TSP, polynomial approximation schemes
(PTAS) are known [2], [19] to �nd a(1 + ") approximate
solution for any " > 0. Such algorithms are mostly of
theoretical interest. When multiple tours are allowed (e.g.,
multiple data mules), the problem of minimizing the total
travel distance collectively done by all tours becomes the
multiple traveling salesman problem (mTSP), which is also
NP-complete and does not have any ef�cient approximation
algorithms [4]. Existing solutions for mule planning are all
heuristic schemes [9], [12], [16], [25], [28].

Random walk. A practically appealing solution for visiting
nodes in a network is by random walk. The downside is that
we encounter the coupon collector problem. Initially a random
walk visits a new node with high probability. After a random
walk has visited a large fraction of nodes, it is highly likely
that the next random node encountered has been visited before.
Thus it takes a long time to aimlessly walk in the network and
hope to �nd the last few unvisited nodes. Theoretically for a
random walk to cover a grid-like network, the number of steps
is quadratic in the size of the network [18]. For a random walk
of linear number of steps, there are a lot of duplicate visitsas
well as a large number of nodes unvisited at all. In the case
of multiple random walks, since there is little coordination
between the random walks, they may visit the same nodes
and duplicate their efforts.

A major problem with all the above constructions is that the
curve found does not have adaptive density. A space �lling
curve has a �xed density, determined by the threshold of
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Fig. 2: (i) A torus cut open along two curvesa, b. (ii) The �attened
torus. The line` : y = kx is shown on the �attened torus (the top
and bottom edges are the cutb, the left and right edges are the cut
a). Since the top edge and bottom edge are actually the same, the
line will go through the torus as shown by the parallel lines.It will
not intersect itself and can be shown to be arbitrarily closeto any
point on the torus.

the recursion. Hamiltonian paths and TSP will generate �xed
length paths. In sensor network applications such as serial
fusion and data mule planning, the length of a path may be
restricted by travel budget or required fusion delay. If we start
with a high density curve, we spend a lot of time visiting nodes
in one region of the network before we ever get information
from another region. Instead, we may want to adopt a visiting
scheme such that we quickly tour around the network coarsely,
get a rough idea of the sensor data and gradually re�ne the
density when more travel budget is available or a higher delay
is allowed. Our construction is one of this type.

B. Our Contribution

In this paper, we propose a scheme to generate a curve
that (i) densely covers any geometric domain with possibly
holes; (ii) have a coverage density proportional to its length.
To understand the main idea, we �rst consider a torus. See
Figure 2. We cut a torus open with two cutsa; b, and �atten
it as a square in the plane with the top edge identi�ed as the
bottom edge and the left edge identi�ed as the right edge.

We will consider the universal covering space by packing
an in�nite number of translated copies of the torus to cover
the entire two dimensional plane, with the origin at the bottom
left corner of one such copy. Now take a straight line` with
a slopek being an irrational number. Mapping back to the
original torus, the line becomes a curve that spirals around
the torus for in�nitely long and never repeats itself. Figure 2
(ii) shows a part of the curve on the torus. We could prove
that the curve has no self-intersections and the curve is dense,
i.e., any pointp of the torus is arbitrarily close to the curve.

With the basic construction for a torus, we will generalize
it to any planar domain with holes. Speci�cally, for a simple
domain with no holes, we will �rst map it one-to-one to a
unit square, and then �ip the square along the top edge and
the right edge to get four copies, creating a torus. Then we �nd
the dense curve on the torus. Since any point in the original
domain is mapped to four copies on the torus, the curve we
�nd will visit any point for at most four times. The property
of being dense still holds. For a domain with holes, we will
�rst double cover it, i.e., creating two copies of the network,
the upstairs copy and the downstairs copy. The two copies are



glued to each other along the hole boundaries to create a multi-
torus, each hole being a handle. In the same way we choose
one handle to �atten the torus, and the rest of the handles
are mapped to very narrow `slits'. A line with irrational slope
in the covering space, when hitting a slit, bounces back. We
could show that the curve will visit each point of the original
domain at most twice and is provably dense.

The mapping of a general two dimensional domain to
a multi-torus is handled by conformal map. Computing a
conformal map for deforming the shape of a sensor network
has been done by using Ricci �ow to change the network
curvature, in a number of prior work [10], [22], [23], [32].
We remark that the tools we use in this paper is different.
Our current method is based on holomorphic differentials
from Riemann surface theory [8]. Imagine an electric �eld
on a surface, then the equipotential lines are orthogonal to
the electric �eld lines everywhere, the pair of electric �eld
lines and the equipotential lines form the holomorphic 1-form.
All holomorphic 1-forms on a surface form a group, which is
isomorphic to the �rst homology group of the surface. We
select a special holomorphic 1-form, such that the integration
of the 1-form gives a special conformal map. Assume the
network is a planar domain with multiple holes, then the
conformal map transforms the domain to an annulus with
concentric circular slits. Two boundaries are mapped to the
inner and outer circles, the other boundaries are mapped to
the slits. This type of maps can not be carried out by Ricci
�ow method, because Ricci �ow requires the target curvature
given a priori. But in this scenario, neither the position nor
the radii of circular slits are known at the beginning. On
the other hand, Ricci �ow is a non-linear method in nature;
whereas holomorphic differential method is a linear one, which
is computationally more ef�cient.

The conformal map is computed for a given network �eld
at the network initialization phase. The computation can be
carried with only the network geometric domainOmega, if
the sensors are densely deployed inside
 . With the map
computed the dense curve can be found and followed locally
by simply specifying an irrational slope. This leads to naturally
decentralized computations and planning in the network that
can bene�t data storage and data mule collection.

In the following we �rst present the theory of �nding a
dense curve in a continuous domain. The algorithmic details
follow. We present simulation results and comparisons with
space �lling curves and random walks at the last.

II. T HEORETICAL FOUNDATION

In this section, we will present the theoretical foundation,
including rigorous proof and computational methodology, of
our dense curve computation. We show how to �nd a dense
curve for a continuous planar domain with a canonical shape
under different topologies, including topological quadrilaterals
(i.e., simple domain without hole), topological annulus (i.e.,
with one hole), and topological annuli (i.e., with multiple
holes). In the next section we will show the detailed algorithm
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Fig. 3: Re�ect twice to create a torus with four copies of a square.
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Fig. 4: Conformal mapping for a topological torus.

to deform any planar domain to be one of the canonical shapes
so that we can apply the dense curve computation.

A. Dense Curve For Annulus and Simply Connected Domains

Denote by S a planar domain. IfS has one hole, we
double cover it – creating two copies, one upstairs copyS
and one downstairs copy� S and glue the two copies along
the corresponding boundaries to form a torus.

If S is simply connected, we �rst map it to a square and
denote byv0; v1; v2; v3 the four corners on the outer boundary.
And now take four copies of the domain, essentially �rst re�ect
along the top edgev0v1 and then re�ect the two copies along
the right edgev1v2. This will make it a torus. See Figure 3.
For both cases, we need to design a dense curve on a torus.

A torus T 2 can be conformally and periodically mapped
onto the plane, namely, the torus can be treated as

T 2 = R2=� ;

where� is the lattice formed by

� := f me1 + ne2 jm; n 2 Zg;

e1 and e2 are linearly independent translations. By an af�ne
transformation as shown in Figure 4, we can deform the lattice
to be the regular integer lattice, namely,e1 = (1 ; 0) ande2 =
(0; 1).

We de�ne a dense curve on a 2D domainT 2 as an in�nitely
long straight line in its universal covering spaceR2, with
irrational slope. It is continuous and non self-intersecting,
and uniformly distributed, as demonstrated by the following
theorem.



Theorem 2.1 (Weyl's Equidistribution Theorem [26], [30]).
Let x be a irrational number,hnxi represents the fractional part
of nx . Then

� hnxi is dense in[0; 1].
� hnxi is equi-distributed in[0; v], namely for large integer

N ,

lim
N !1

# f n < N jhnx i 2 (c; c+ � )g
N

= �:

The following result is a well known corollary of the equidis-
tribution theorem.

Theorem 2.2 (Dense Curve On a Torus).SupposeT 2 =
R2=� , where � is the canonical integer lattice� =
f (m; n)jm; n 2 Zg. Let  be a straight line with irrational slope
on R2, � : R2 ! T 2 is the projection, then� ( ) is dense and
equi-distributed onT 2.

B. Dense Curve For Multiply Connected Domain

A relatively similar idea can be applied for multiply con-
nected domains. As shown in Figure 5, the input network
in (a) is a planar domain withn + 1 boundary components
f  0;  1; � � � ;  n g, where 0 is the exterior boundary compo-
nent. The domain is then conformally mapped to an annulus
with concentric slits in (b), such that 0 is mapped to the outer
circle,  1 is mapped to the inner circle, k , 1 < k � n, are
mapped to concentric circular arcs. The shortest path(s) from
 k ; k > 1 to  0 are denoted as� k . By taking the complex
logarithm, the annulus in(b) is mapped to a rectangle with
horizontal slits, as shown in(c). Note that, the annulus is cut
along� 1, therefore the left and right vertical boundaries of the
rectangle are both� 1. Denote by the rectangular domain as
D 0.

The heights, startingx-coordinates and the lengths of the
slits (denoted as(hi ; si ; l i ) respectively) are conformal invari-
ants of the sensor network domain. In other words these are
the “�ngeprints” of the domain [1]. There can only be two
cases here:

1) All of hi ; si and l i are rational.
2) At least one of thehi ; si and l i are irrational.
The curve we construct is a simple “billiards” path (starting

from the lower left corner of the rectangle) in the rectangular
domainD 0. We take a curve by starting from the bottom left
corner ofD 0 with an irrational slope. When the path hits a
slit, top or bottom boundary ofD 0, it is bounced back. The
two vertical sides of the rectangle are identi�ed and the curve
continues at the point from the same height on the left vertical
side when it exited the right vertical side from. See Figure 8
for details.

Using techniques from complex dynamics, we can show
that:

1) In case 1, a billiards path with irrational slope is dense
and ergodic.

2) In case 2, the set of initial directions (from(0; �
2 )) which

ensure density of the resulting billiards path is measure
1. This means that if we pick a direction randomly, the
resulting curve will be dense with probability 1.

The proofs of the above claims are omitted from this abstract
due to space constraints.
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Fig. 6: Tiling of H by copies ofD and the curve �

C. Comparison With Space Filling Curves

A space �lling curve will be `�lling up' the square, i.e.,
every point of the square is on the curve. A space-�lling curve
must be everywhere self-intersecting in the technical sense that
the curve is not injective1. Intuitively, a non self-intersecting
curve can never �ll up the square as the two have different
topologies.

In our case, we generate a continuous curve which is non
self-intersecting on a torus. It does notgo through all the
points but it isarbitrarily close to all points — any pointp
is within distance" of the curve, for" > 0 to be arbitrarily
small. For a simple domain, since we use four copies to create
a torus, our dense curve will visit each point of the original
domain at most four times. For a domain with holes, we use
two copies to create a torus or a multi-torus. Thus a dense
curve in our construction will visit each point of the original
domain at most twice. This ensures that the dense curve in the
applications will eventually visit the entire network and does
not visit any particular node too often.

III. T HEORY ON MULTI -HOLE DOMAIN

The dense curve we construct for applications in a sensor
network domain with holes is simply a “billiard” path in
the transformed slit domainD (Figure 1). The proof for
the rectangular domain is identical to the case in which the
domainD

0
is a square; which we will assume in this appendix.

Billiards in polygons is a rich and well researched �eld with
many interesting open problems (for an excellent survey, see
[?]). Most of the techniques involve the theory of Riemann
Surfaces, especially Teichmüller theory. In this section, we
explain the construction of our curve and use these theories
to derive properties of the curve.

A. Preliminaries

1) Notation: Let I denote the unit square[0; 1]� [0; 1]. Let
H denote the in�nite stripR� [0; 1]. Let Si ; 1 � i � n denote
the horizontal slits;Si � I 8i . Each slitSi is de�ned by a
triple (hi ; si ; l i ) wherehi is the y-coordinate,si is the starting
x-coordinate, andl i is the length (l i < 1� x i ) of the slit. With
the above notation,D = I [ S1 [ ::: [ Sn . We consider a tiling
of H by copies ofD as shown in Figure 2. Similarly, call

1An injective function is a function that preserves distinctness: it never
maps distinct elements of its domain to the same element.
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bH the domain we get by taking copies of a re�ection ofD
(denotedbD) along the x-axis.

2) Curve De�nition: We construct a curve �;x in the
following way. Shoot a ray fromx 2 D which makes an
angle� with the positive x-axis. The ray then gets re�ected at
the following boundaries :

1) The lineL 1 = R � f 1g
2) The lineL 0 = R � f 0g (the x-axis)
3) Any copy of the slitCi;t , which by de�nition is a slit

of type (hi ; si + t; l i ), wheret 2 Z.

Let � : H �! I be the natural projection map. Let� �;x =
� ( �;x ).For such a curve with initial direction� , one can
also de�ne a �ow F� : H �! H which intuitively takes a
point z 2 H to the corresponding point on �;z after one
unit of time (assuming unit speed parameterization of �;z ).
Such a �ow is calledergodic if the only invariant sets are
(Lebesgue) measure 0 or 1. LetO denote the origin. We are
mainly interested in properties of� �;O (which is the curve we
use for our purposes) and ergodicity ofF� . For the sake of
brevity, we set� � := � �;O and � :=  �;O

Fig. 8: Tiling of H by copies ofD and the curve �
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B. Quadratic Differentials and trajectories

Quadratic differentials play an important role in the theory
of Moduli of Riemann Surfaces. We refer the reader to [?] for
a better explanation of these objects. Here we will only de�ne
them and state their main properties.

Holomorphic Quadratic Differential : A holomorphic
quadratic differential on a Riemann SurfaceR is an assignment
of a function� i (zi ) on each chartzi such that ifzj is another

local coordinate, then� i (zi ) = � j (zj )( dz j

dz i
)

2
.

It is well known ( [?], [?]) that every quadratic differential
on R provides “�at” coordinates; coordinates in which the
metric of the underlying surface is �at (euclidean) everywhere
except at �nitely many points (corresponding to zeroes of the
differential), which are also called cone singularities.

This metric is locally given byj� (z)j
1
2 jdzj. On the comple-

ment of these singularities, the coordinate chartsz = ( x; y) are
such that the change of coordinates on the intersection of two
charts are of the formz �! z + c or z �! � z + c. In other
words, the transition functions are translations and re�ections
in the origin composed with translations. Also, any such �at
structure corresponds to a unique quadratic differential.

Furthermore, every quadratic differential naturally de�nes
a pair of trajectories. Ahorizontal trajectoryis a curve for
which � (z)dz2 > 0 and avertical trajectory is a curve for
which � (z)dz2 < 0

1) Saddle Connections:For a more detailed account of
saddle connections, see ( [?])

Let P be the set of the endpoints of all the slits (including
copies of the original slits). Hence

P = f x 2 H : x = ( si + �l i + t; h i ); 1 � i � n; � 2 f 0; 1g; t 2 Zg



Let x; y 2 R2 andL(x; y) denote the (closed) line segment
joining point x to point y.
Saddle Connections: The set of Saddle connectionsS is the
set of all possible line segments between endpoints of two
distinct slits inH . Formally,

S = f L (x; y) : x; y 2 P; x 6= yg

Note that in our case, this set is countable.
With this, we have all the building blocks for stating our

theorems.

C. Main theorems

In the following,Q denotes the �eld of rational numbers.
Lemma 1: Let hi ; si ; l i 2 Q. Further, let� be such that
tan( � ) is irrational. Then@̀ 2 S such that̀ �  � .
Proof: By hypothesis,(si + t + �l i ; hi ) 2 Q� Q for all t 2 Z
and all � 2 f 0; 1g. Since all the endpoints of the slits are at
rational coordinates, it is clear that all saddle connections have
rational slopes. � has lines of only two slopes,tan( � ) and
� tan( � ), both of which are irrational. Therefore, � cannot
contain any segment fromS.
Theorem 1: Let hi ; si ; l i 2 Q and � be such thattan( � ) is
irrational. Then :

1) � � is dense inD .
2) The �ow F� is ergodic.
3) Let x 2 D; then � � passes throughx at most twice.

Proof: The curve � has lines of two slopes,tan( � ) and
� tan( � ). The curve on the copy inH contains only the
line segments of slopetan( � ) and once any such segment is
re�ected, it continues inbH appropriately, as a line with slope
againtan( � ) (Figure 3).

Consider the genusn + 1 surface obtained by identifying a
boundary ofD to its corresponding re�ected boundary in�D .
In this way, we obtain a “�at surface”, which has a euclidean
(�at) metric everywhere except at �nitely many cone singulari-
ties which occur at the end points of the glued boundaries. The
charts are naturally de�ned from (the embedding of)D .Let �
be the quadratic differential associated with this �at structure.
With the above construction, we now get a continuous curve
V on the �at surface.

Consider the “rotated” quadratic differentialei� � . One can
see thatV is a vertical trajectory of this differential. Now,
we use a theorem from [?] which informally says that on a
�at surfaceR, a trajectory of any quadratic differential which
does not contain any saddle connection is dense. Furthermore,
ergodicity of such directions was proved in [?]. Along with
Lemma 1, these prove (i) and (ii). To prove (iii), assume the
contrary. If there is a pointx which � � passed through at least
three times, then one of the directions� or (� � � ) must be
repeated, which would mean that� � is periodic; contradicting
(i). In fact, using the above construction and [?], [?], one can
also prove that
Theorem2: Let hi ; si ; l i 2 R. Then the set of directions�
for which � � is dense and ergodic is (Lebesgue) measure 1 in
the set(0; 2� ).

Fig. 9: Decomposing � into two curves; one inH and one
in bH
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Remarks:

1) In the rational case, we can �nd exactly the direction
we need to obtain a dense curve.

2) In the irrational case, picking any direction uniformly at
random, with probability 1 we get a dense curve.

3) Ergodicity here implies that the curve we get isuni-
formly densein the domainD . This means that on the
average, our curve will go through any two distinct equi-
radii disks (contained inD) with almost same frequency.
However, this does not imply uniform density in the
original domain, since the conformal map we use in the
next section does not preserve areas.

IV. A LGORITHMS FORDISCRETECONFORMAL MAPPING

In this section we go through the computational tools to
deform an input domain to our canonical shape of a torus or
a multi-torus on which we de�ne a dense curve. Our method
is based on conformal geometry. The following theorem lays
down the theoretic foundation for our method:

Theorem 4.1 (Ahlfors [1] - Slit Conformal Map).
Suppose 
 is a planar domain with multiple boundary
components@
 = f  0;  1; � � � ;  n g, then there exists a
conformal map� : 
 ! D, whereD is a unit planar annulus
with concentric circular slits, such that� ( 0) and � ( 1) are
the outer and inner circles of the annulus,� ( k )0s; k > 1, are
concentric circular slits. Such kind of conformal mapping� is
unique up to a rotation.

The discrete algorithms for computing conformal mappings
for arbitrary 2D domain are explained in details below. The
pipeline is as follows: 1) Compute cohomology basis; 2)
Compute harmonic 1-form basis; 3) Compute holomorphic 1-
form basis; and 4) Compute the slit map.

Discrete exterior calculus.Similar to all prior work [10], [22],
[23], [32], the network is represented as a discrete triangular
meshM = ( V; E; F ), with the vertex setV , the edge setE
and the face setF . An oriented edge is denoted as[vi ; vj ], an



oriented faces is[vi ; vj ; vk ]. The boundary operator takes the
boundary of a simplex:

@[vi ; vj ] = vj � vi ;
@[vi ; vj ; vk ] = [ vi ; vj ] + [ vj ; vk ] + [ vk ; vi ]:

A 0-form is a function de�ned on the vertex setf : V ! R. A
1-form is a linear function de�ned on the edge set! : E ! R.
A 2-form is a linear function de�ned on the face set� : E !
R. The discrete exterior differential operator is de�ned as

d! (� ) := ! (@�):

If ! is a closed form, thend! = 0 .
Let [vi ; vj ] is an interior edge, with two adjacent faces

[vi ; vj ; vk ] and [vj ; vi ; vl ]. Then the edge weight is de�ned
as

wij := cot � k
ij + cot � l

ji ;

where � k
ij is the corner angle at vertexvk in the face

[vi ; vj ; vk ]. If [vi ; vj ] is a boundary edge, adjacent to[vi ; vj ; vk ]
only, then

wij := cot � k
ij :

The discrete co-differential operator is de�ned as follows. Let
! be a one-form, then�! is a 0-form,

�! (vi ) =
X

[v i ;v j ]2 E

wij ! ([vi ; vj ]):

If f : V ! R is a harmonic function, then

� f (vi ) = �df (vi ) =
X

[v i ;v j ]

wij (f (vj ) � f (vi )) = 0 ; 8vi 2 V:

Step 1: Compute cohomology basis.Suppose the boundary
components of the mesh are@M=  0 �  1 �  2 � � �  n , where
 0 is the exterior boundary. Compute the shortest path from k

to  0, denoted as� k as shown in �gure 10. Slice the meshM
along� k to get a meshM k , the path� k on M corresponds to
two boundary segments� +

k and� �
k on M k . De�ne a function

f k : M k ! R,

f k (vi ) =

8
<

:

+1 vi 2 � +
k

� 1 vi 2 � �
k

0 vi 62� +
k [ � �

k

Assumee 2 � +
k [ � �

k , thendf k (e) = 0 . Therefore, the exact
1-form df k on M k in fact is a closed 1-form on the original
meshM . Let � k := df k on M , then

f � 1; � 2; � � � ; � n g

form a basis for the cohomology groupH 1(M; R).

Step 2: Compute harmonic 1-form basis.Given a closed
1-form � k , we can �nd a functiongk : M ! R, such that

� (� k + dgk )(vi ) =
X

[v i ;v j ]

wij f � k ([vi ; vj ])+( g(vj )� g(vi ))g = 0 ;

for all vertexvi in M . Then! k := � k + dgk is a harmonic 1-
form. Thenf ! 1; ! 2; � � � ; ! n g form the basis for the harmonic
1-form basis.

Fig. 10: Exact harmonic 1-formsf ! 4 ; ! 5 ; ! 6g.

Fig. 11: Holomorphic 1-forms basisf � 1 ; � 2 ; � 3g.

Similarly, we computen harmonic functionsf k : V ! R,
with Dirichlet boundary condition, such that

8
<

:

� f k (vi ) = 0 8vi

f k (vi ) = 1 vi 2 � k

f k (vi ) = 0 vi 2 @M� � k

Then let! n + k := df k , thenf ! n + k g; k = 1 ; 2; � � � ; n are exact
harmonic 1-forms.

Step 3: Holomorphic 1-form basis.For each harmonic 1-
form ! i , we compute its conjugate harmonic 1-form� ! k .

� ! i =
2nX

j =1

� ij ! j

The unknownsf � ij g can be computed by solving the follow-
ing linear equation system:

Z

M
! i ^ � ! j =

2nX

k=1

� jk

Z

M
! i ^ ! k :

The wedge products can be computed as follows. Let
[vi ; vj ; vk ] be a triangle face,ei = [ vj ; vk ], ej = [ vk ; vi ] and
ek = [ vi ; vj ]. Then by direct computation, we get

Z

[v i ;v j ;v k ]
! 1 ^ ! 2 =

1
2

�
�
�
�
�
�

! 1(ei ) ! 1(ej ) ! 1(ek )
! 2(ei ) ! 2(ej ) ! 2(ek )

1 1 1

�
�
�
�
�
�

and
R

[v i ;v j ;v k ] ! 1 ^ � ! 2 = 1
2 [! 1(ei )! 2(ei ) cot � i

jk +

! 1(ej )! 2(ej ) cot � j
ki + ! 1(ek )! 2(ek ) cot � k

ij ]

Let � k := ! k + � ! k
p

� 1, Thenf � 1; � 2; � � � ; � n g form the basis
for the holomorphic 1-form group. Figure 11 shows the basis
for holomorphic 1-forms.

Step 4: Slit conformal mapping.We then search for a special
holomorphic 1-form� =

P
k xk � k , such that

Img (
Z

 0

� ) =
X

k

xk Img (
Z

 0

� k ) = 2 �:



 0

 1

 2

 3

 0

 1

 2

 3

(a) a 3-hole domain (b) circular slit mapping

 0

 1

 2  3� �
1

� 2� 3

� +
1

 0

 1

 2  3

(c) horizontal slit mapping (d) cylinder mapping

Fig. 12:Conformal mapping from the domain to the annulus, 0 is
mapped to the outer circle, 1 is mapped to the inner circle.

and
Z

 i

� =
X

k

xk Img (
Z

 i

� k ) = 0 ; i = 2 ; 3; � � � ; n:

This implies
R

 1
� = � 2� . Then the mapping is given by

� (z) = exp f
Z z

z0

� g:

where the integration path is arbitrarily chosen.

Now we summarize the computation and communication
steps involved in the pipeline.

1) Step 1: Compute cohomology basis. In this step we will
�nd shortest paths connecting the interior holes to the
outer boundary. This can be done by a single �ooding
starting from the nodes at the inner hole boundaries
simultaneously.

2) Step 2: Compute harmonic 1-form basis. In this step we
computen harmonic functions, wheren is the number of
holes. This uses the Dirichlet boundary condition and an
iterative gossip-style algorithm, similar to the distributed
algorithm used in [15].

3) Step 3: Compute holomorphic 1-form basis. This in-
volves completely local operations. Each node will solve
a linear system only on its neighbors.

4) Step 4: Slit conformal mapping. This involves only one
round of �ooding, starting from the outer boundary
inward. The nodes compute their virtual coordinates.

The algorithm solves sparse linear systems. Therefore the
holomorphic differential method is more ef�cient comparedto
the non-linear curvature �ow methods. The algorithm handles
domains with two or more holes. For other cases the algorithm
is similar.

Simply connected domain.If the input network is a simply
connected domain, we select four corner vertices on the
boundary f v0; v1; v2; v3g sorted counter-clock-wisely. Then

we glue two copies of the network along the boundary
segments betweenv0; v1 and the boundary segments between
v2; v3. The result is a topological annulus. The algorithm above
can also handle this case and will map the doubled network
to an annulus. By taking the complex logarithm, the original
network is mapped to a planar rectangle, such that the four
corners are mapped to the corners of the rectangle.

Doubly connected domain.If the input network is a doubly
connected domain, the conformal mapping gives a canonical
annulus. By taking the complex logarithm, it is �attened to
a periodic rectangle. Glue one copy along one boundary, the
result domain is a topological torus.

V. SIMULATIONS

A. Dense Curve Discretization

The aperiodic dense curve is identi�ed as a continuous line
in the universal covering space. To apply it in sensor networks,
the curve needs to be mapped to a discrete path. There are
various strategies for curve discretization. In our setting we
suppose there is a sensor networkG deployed on a continuous
sensor domainR. We compute the dense curve onR and
expand the width of the curve to get a belt regionB. The
discrete path starts at an arbitrary nodes 2 B . For a nodeu
on the path, we compute its next hop from the set of neighbors
falling inside the beltB: C(u) = f uju 2 N (u) andu 2 Rg
based on a closeness measurement. This will generate a
discrete path.

B. Comparison with Various Network Covering Approaches

We compare our method with a number of other approaches
that generate a linear ordering of the sensor nodes, speci�cally,
the space �lling curves, Eulerian cycles and random walks. For
space �lling curve, we use the Moore curve which covers a
square densely. See Figure 13 for an example. Starting from a
corner, a space �lling curve �rst visits nodes nearby exhibiting
strong locality. It also does not handle network holes and
may be disconnected into multiple pieces. An Eulerian cycle
gives a cycle on the network nodes in which one node may
appear multiple times. We build a minimum spanning tree of
the network, duplicate all the edges to generate an Eulerian
cycle. Compared to the aperiodic dense curve, Eulerian cycle
also has spatial locality. For random walk, the next hop of the
path is chosen uniformly randomly from the neighbors of the
current node.

Since Moore curve only exists on a square, in our compari-
son the networks are deployed on square regions without holes.
The sensor nodes are uniformly randomly deployed within
the network region, the transmission pattern follows the unit
disk graph model(UDG). In the experiment the networks have
5; 000 nodes with average degrees to be7, we uniformly ran-
domly generated10 networks to average out the randomness.

Figure 14 shows the network coverage percentage as the
paths move forward. Thex axis is the length of the path in
the number of hops, they coordinate is the percentage of nodes
covered by the path. It is obvious that aperiodic dense curves,
Eulerian cycles and Moore curves are much better than random



Fig. 13: The Moore curve (source: Wikipedia).

walk in terms of coverage, which is not surprising because
these are well-guided curves, while a random walk is aimless.
Since Moore curve is designed to cover the unit square case,
the coverage grows linearly at a fast pace. However, the
problem for Moore curve to be used in practice is that: it
needs to choose a resolution before the curve starts. If the
resolution is not appropriately selected, Moore curve may
miss some nodes when it comes back to the starting point.
Any continuation will not discover new nodes, as shown in
the later part of the curve in Figure 14. The Eulerian cycle
can eventually cover all nodes by de�nition. Compared to all
the other methods, our approach has a clear advantage at the
beginning of the path. Our dense curve sets out to explore
the entire domain in a coarse manner; network coverage is
improved continuously when the path is longer.

Figure 15 shows the average shortest distance from the set
of unvisited nodes to the set of visited nodes, this average
shortest distance criteria measures the locality propertyof
the paths. If the path visits most of nearby nodes before
moving to nodes faraway, the average shortest distance can still
remain relatively high even though the path visits more nodes.
Compared to other methods, the average shortest distance of
the aperiodic dense curve drops sharply, which means that the
aperiodic dense curve visits the network in a more global way
than other methods.

To conclude, the aperiodic dense curve, Moore curve and
Eulerian cycle cover the network much faster than random
walk. Compared to the Moore curve and Eulerian cycle, the
aperiodic dense curve is able to quickly sample the whole
network, which gives a good representation of the network in
the early stage.

C. Covering Network with Holes

Sensor networks may have obstacles inside, which lead to
holes in the sensor domain. Normal space �lling curves like
Moore curve would fail under such cases, because those curves
only cover the unit square, and would become disconnected
pieces. By performing conformal mapping to map the holes
to slits, the aperiodic dense curve can be used to cover the
whole sensor domain. Figure 16 shows a 2-hole network with
its conformal mapping to circular slits and cylinder. Figure 17
shows the aperiodic dense curve on the network.
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Fig. 14: Comparison on Network Coverage
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Fig. 15: Comparison on Average Shortest Distance from Unvisited
Nodes to Visited Nodes

Fig. 16: Conformal mapping for a network with holes.

VI. D ENSE CURVE APPLICATIONS

Multiple paths and data mule coordination. To gather net-
work data, one could use multiple data mules simultaneously
to speed up the process. To coordinate and collaborate with
each other, the data mules may need to communicate during
the data collection, which can be expensive or even infeasible.
By using aperiodic dense curve we can reduce such coordi-
nation efforts. Each aperiodic dense curve would be able to
cover the whole network in a particular pattern, and the visiting
pattern is prede�ned by the slope and starting position. By
deliberately assigning slopes and starting positions to multiple



Fig. 17: A dense curve on the network in Fig. 16.

aperiodic dense curves, the data mules can collectively cover
the whole network such that the overlap between different
paths is small. Figure 18(ii) shows two dense curves starting
from different boundary nodesO1; O2 with different slopes.

Double ruling. Besides the applications for data mule plan-
ning and data fusion, we can also make use of the dense
curve for in-network storage and retrieval. One scheme for
storing sensor data in the network, called double rulings,
stores the sensor data along a storage curve and retrieves data
along a retrieval curve. Data is retrieved when the retrieval
curve intersects the storage curve. Previous double rulings
schemes are only designed for networks of a regular shape,
e.g., the horizontal/vertical lines [17], [27], [31], or proper
circles (great circles through a stereographic mapping) [24].
When the network has holes, these curve are fragmented by
the presence of holes. Alternative repairing schemes must be
used to reconnect them.

A pair of non-parallel aperiodic dense curves give two
trajectories on the network that intersect with each other.Those
two trajectories form a lattice on the network, which is very
suitable for double ruling. In particular, for storage curves,
we simply use the linè : y = kx with slope k. For the
retrieval curves, we use the linè� : y = x=k, i.e., the line
perpendicular tò in the universal covering space. Figure 18(i)
shows the double ruling result from two consumersA; B to
get the data from the producer trajectory.

(i) double ruling. (ii) multiple paths.

Fig. 18: Dense curve applications.

VII. C ONCLUSION

In this paper we propose the computation of a dense
curve for any planar domain. When walking on the curve
the trajectory will gradually and densely cover the domain
of interest. This linearization of a 2D network can be useful
for any scenarios that require a logical serial order. We hope
to develop applications of this idea for data mule planning in
our future work.
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