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Abstract—In this paper we propose an algorithm to construct direct communication with a sensor in close proximity. Besi

a “space lling” curve for a sensor network with holes. Mathe-  collecting sensor data, a data mule can also be helpful for
matically, for a given multi-hole domain R, we generate a path  gengor network maintenance such as battery recharge rbeaco
P that is provably aperiodic (i.e., any point is covered at mos based localization [3], [13], etc. A data mule moves along a
a constant number of times) and dense (i.e., any point oR . v == : . g

is arbitrarily close to P). In a discrete setting as in a sensor Path. Planning the motion of a data mule requires a path that
network, the path visits the nodes with progressive densitywhich  visits the nodes in the network with minimum duplicate &@sit
can adapt to the budget of the path length. Given a higher When there are multiple data mules in the network, a exible
budget, the path covers the network with higher density. Wi gat of naths that can be used by the data mules with minimum

a lower budget the path becomes proportional sparser. We sho S . - . .
how this density-adaptive space lling curve can be useful dr coordination and minimum interference (e.g duplicatetsisi

applications such as serial data fusion, motion planning fodata by different mules) will be handy.
mules, sensor node indexing, and double ruling type in-netark  Sensor node indexingAnother application of representing a
data storage and retrieval. We show by simulation results t8  gangor network by a linear order is for indexing sensor nodes
supetrior performance of using our algorithm vs standard spae or sensor data [14]. A number of indexing schemes for muiti-
lling curves and random walks. . . . ) i 9 >
dimensional input rst take a space lling curve to lineael
. INTRODUCTION the input and then apply standard 1D indexing mechanisms.

We consider a sensor network that densely covers a planalh the following we rst review previous work of linearizing
domain, possibly with multiple network holes. In this paper @ two dimensional continuous domain or a discrete two
develop algorithms to linearize the network, i.e., ‘congrthe dimensional network, before we present our ideas.
sensor network by a single path. By enforcing a linear ordar Related Work
of the sensor nodes one can carry serial logical de nitiam a
serial operations on both the sensor nodes and the sensor dS
We list a number of such applications in the following.

pace lling curves. In the continuous setting, various space
ﬁﬂwg curves have been dened for a square region [21].
The narrow de nition of space lling curve, in mathematical
Serial data fusion.When a signal is spread over an area largehalysis, refers to a curve whose range contains the ehtire
than the coverage range of a single sensor, we will need to ésgensional unit square (or more generallyNrdimensional
multiple sensors to collaboratively detect the distribiggnal. hypercube). Space lling curves were initially discoverieg
One type of data fusion mechanisms, caléedial fusion[5], Giuseppe Peano and are also called Peano curves. These
[29], combines sensor observations in a linear fashiontivele curves are often recursively constructed. See Figure 1rfor a
hypothesis. A state is maintained and passed on from senggtance of the Hilbert curve. The basic recursive strcisito

to sensor along a serial path, incorporating new observatio replace a line segment by a zig-zag pattern. In a recurséye st
each step. This is in contrast witfarallel fusionmechanism each segment is replaced by a scaled and rotated versiois of th
in which sensors independently process their data and passgattern. The larger number of recursions used, the denser th
output to a centralized fusion center. There are pros and c@urve becomes. Mathematically every point of the unit squar
for serial fusion v.s. parallel fusion respectively. Onetisalar s on the curve, given an in nite number of recursions. For
advantage of serial fusion is that the fusion process can &ejiscrete set of points it suf ces to take a suf ciently high
stopped as long as there is enough evidence to supporth@mber of recursions to generate a linear order of the points
reject the hypothesis, while in parallel fusion all datal Wi Space lling curves in this narrow de nition only apply t&-
sent to the fusion center nevertheless. The implementafiondimensional (orN -dimensional) unit squares (hyper-cubes).
the serial data fusion in a distributed network requires th pavhen the domain is irregular and/or has holes the space
that visits all the nodes in a linear order [20]. lling curve will be chopped into many disconnected pieces.
Motion planning of data mules. Collecting data from sensor Very little work is known about extending the space lling
networks to a static data sink often suffers from communicgurves to other shapes. The only work known is a heuristic
tion bottleneck near the sink. One way to address this is¢o wgorithm [11] with a modi ed Hilbert curve for an ellipse.

a mobile sink, or called a data mule, implemented by a mobittamiltonian paths. In a discrete setting such as a graph,
device touring around the network to collect data through natural analog of a space lling curve is a Hamiltonian



0] (i)
Fig. 2: (i) A torus cut open along two curves b. (i) The attened
torus. The line’ : y = kx is shown on the gttened torus (the top
Fig. 1: The Hilbert curve (source: Wikipedia). and l?ottom edges are the duytthe left and right edges are the cut
a). Since the top edge and bottom edge are actually the same, th

; ; ; :«iline will go through the torus as shown by the parallel linkswill
cycle or a Hamiltonian path, i.e., a cycle or a path that s”S¢10t intersect itself and can be shown to be arbitrarily clsany

each vertex once and only once. Only a subset of graphs lﬂﬁﬁt on the torus.
a Hamiltonian path and determining whether a Hamiltonian

path or a Hamiltonian cycle exists in a given graph (whethgfe recursion. Hamiltonian paths and TSP will generate xed
directed or undirected) is NP-complete, even in restrictgghgth paths. In sensor network applications such as serial
families such as planar graphs [7]. fusion and data mule planning, the length of a path may be
Traveling salesman tour.When a metric is de ned betweenrestricted by travel budget or required fusion delay. If waats
any two nodes, the traveling salesman problem (TSP) asks fath a high density curve, we spend a lot of time visiting n®de
the shortest tour that visits each node once and only once.innone region of the network before we ever get information
our setting the distance between two nodes can be either ttm another region. Instead, we may want to adopt a visiting
graph distance or the Euclidean distance. The latter begonseheme such that we quickly tour around the network coarsely
the Euclidean TSP. Both the metric TSP and the special cags a rough idea of the sensor data and gradually re ne the
of Euclidean TSP are NP-complete. For the metric TSP, tdensity when more travel budget is available or a highenydela
heuristic of using the Euler tour on the minimum spanninig allowed. Our construction is one of this type.

tree gives a two-approximation. With some additional tsick

the Christo des algorithm [6] gives &8=2 approximation. B. Our Contribution

For the Euclidean TSP, polynomial approximation schemes nis paper, we propose a scheme to generate a curve

(PTA_S) are knOVY,n [2], [19] to nd a(_l * ") approximate 5 (i) densely covers any geometric domain with possibly
solut|0r_1 for_ any® > 0. Such _algorlthms are mostly Ofholes; (i) have a coverage density proportional to its thng
theoretical interest. When multiple tours are allowed .(e.Gry nderstand the main idea, we rst consider a torus. See
multiple data mules), the problem of minimizing the tOtail—'igure 2. We cut a torus open with two cusb, and atten
travel distance collectively done by all tours becomes the o 5 square in the plane with the top edge identi ed as the

multiple traveling salesman problem (mTSP), which is al§g,yom edge and the left edge identi ed as the right edge.
NP-complete and does not have any ef cient approximation We will consider the universal covering space by packing

algorithms [4]. Existing solutions for mule planning aré alan in nite number of translated copies of the torus to cover

heuristic schemes [9], [12], [16], [25], [28]. the entire two dimensional plane, with the origin at the dwit
Random walk. A practically appealing solution for visiting |eft corner of one such copy. Now take a straight lineith
nodes in a network is by random walk. The downside is thats|opek being an irrational number. Mappmg back to the
we encounter the coupon collector problem. Initially a @md original torus, the line becomes a curve that spirals around
walk visits a new node with high probability. After a randomhe torus for in nitely long and never repeats itself. Figu2
walk has visited a large fraction of nodes, it is highly likel (i) shows a part of the curve on the torus. We could prove
that the next random node encountered has been ViSite(bbefﬂfat the curve has no self-intersections and the curve is@en
Thus it takes a long time to aimlessly walk in the network ance., any pointp of the torus is arbitrarily close to the curve.
hope to nd the last few unvisited nodes. Theoretically for a \wjth the basic construction for a torus, we will generalize
random walk to cover a grid-like network, the number of steggtg any planar domain with holes. Speci cally, for a simple
is quadratic in the size of the network [18]. For a random walfomain with no holes, we will rst map it one-to-one to a
of linear number of steps, there are a lot of duplicate vis#s jnjt square, and then ip the square along the top edge and
well as a |al‘ge number of nodes unvisited at all. In the Caﬁ% nght edge to get four Copiesy Creating atorus. Thenveke n
Of multlp|e random WaIkS, Since thel’e iS ||tt|e COOfdinﬂtiOthe dense curve on the torus. Since any point in the Original
between the random walks, they may visit the same nodgsmain is mapped to four copies on the torus, the curve we
and duplicate their efforts. nd will visit any point for at most four times. The property

A major problem with all the above constructions is that thef being dense still holds. For a domain with holes, we will
curve found does not have adaptive density. A space llingst double cover it, i.e., creating two copies of the netkor
curve has a xed density, determined by the threshold dfie upstairs copy and the downstairs copy. The two copies are




glued to each other along the hole boundaries to create & mult |- 1T L

torus, each hole being a handle. In the same way we choose

one handle to atten the torus, and the rest of the handles

are mapped to very narrow slits'. A line with irrational p®

in the covering space, when hitting a slit, bounces back. We %10

could show that the curve will visit each point of the oridina

domain at most twice and is provably dense. S
The mapping of a general two dimensional domain to

a multi-torus is handled by conformal map. Computing a

conformal map for deforming the shape of a sensor network V3 V2

has been (_jone by using RI(.:CI ow to change the networ|J;(ig' 3: Re ect twice to create a torus with four copies of a square.

curvature, in a number of prior work [10], [22], [23], [32]. = . ... L , , .

We remark that the tools we use in this paper is different. Wﬁ" """"""""

Our current method is based on holomorphic differentials i Ds Dg i Do

from Riemann surface theory [8]. Imagine an electric eld J i i ;

on a surface, then the equipotential lines are orthogonal to *--======"" > wo R e

the electric eld lines everywhere, the pair of electric cel l i i i i

lines and the equipotential lines form the holomorphic drrfo , : : : :

All holomorphic 1-forms on a surface form a group, whichis : IS S SO L

isomorphic to the rst homology group of the surface. We & ' : : : :

select a special holomorphic 1-form, such that the intégmnat

of the 1-form gives a special conformal map. Assume the :

network is a planar domain with multiple holes, then the

conformal map transforms the domain to an annulus with (&) square mapping (b) universal covering space

concentric circular slits. Two boundaries are mapped to the Fig. 4: Conformal mapping for a topological torus.

inner and outer circles, the other boundaries are mapped to

the slits. This type of maps can not be carried out by Ricth deform any planar domain to be one of the canonical shapes

ow method, because Ricci ow requires the target curvaturso that we can apply the dense curve computation.

given a priori. But in th|s scenario, neither the positiorr %\ Hense Curve For Annulus and Simply Connected Domains

the radii of circular slits are known at the beginning. On

the other hand, Ricci ow is a non-linear method in nature; Denote byS a planar domain. IfS has one hole, we

whereas holomorphic differential method is a linear oneictvh double cover it — creating two copies, one upstairs c8py

is computationally more ef cient. and one downstairs copyS and glue the two copies along
The conformal map is computed for a given network eldh€ corresponding boundaries to form a torus.

at the network initialization phase. The computation can belf S is simply connected, we rst map it to a square and

carried with only the network geometric domadmega, if denote byo; va;va;vs t.he four corners on the outer boundary.

the sensors are densely deployed inside With the map And now take four copies of the domam,essenually_ rstrete

computed the dense curve can be found and followed locaf{Pnd the top edgeov; and then re ect the two copies along

by simply specifying an irrational slope. This leads to maly the right edgevyv,. This will mak_e it a torus. See Figure 3.

decentralized computations and planning in the network tHzor both cases, we need to design a dense curve on a torus.

can bene t data storage and data mule collection. A torus T? can be conformally and periodically mapped

) ) onto the plane, namely, the torus can be treated as
In the following we rst present the theory of nding a

dense curve in a continuous domain. The algorithmic details T?=R?=
follow. We present simulation results and comparisons with . .

. where is the lattice formed by
space lling curves and random walks at the last.

;= fmey + nexjm;n 2 Zg;

Il. THEORETICAL FOUNDATION . . .
e; ande; are linearly independent translations. By an af ne

In this section, we will present the theoretical foundationtransformation as shown in Figure 4, we can deform the &attic
including rigorous proof and computational methodolody, do be the regular integer lattice, namedy,= (1 ;0) ande; =
our dense curve computation. We show how to nd a denge;1).
curve for a continuous planar domain with a canonical shapeWe de ne a dense curve on a 2D domdif as an in nitely
under different topologies, including topological quéaterals long straight line in its universal covering spa&&, with
(i.e., simple domain without hole), topological annulug.( irrational slope. It is continuous and non self-intersagti
with one hole), and topological annuli (i.e., with multipleand uniformly distributed, as demonstrated by the follayvin
holes). In the next section we will show the detailed aldonit theorem.



Theorem 2.1 (Weyl's Equidistribution Theorem [26], [30]). The proofs of the above claims are omitted from this abstract
Letx be a irrational numbemxi represents the fractional partdue to space constraints.
ofnx. Then

xi is dense if0; 1].

xi is equi-distributed if0; v], namely for large integer — — VV —
N H
im #fn<N jnxi2 (c;c+ )g _ . b
N1 N o /Y/i — - —
The following result is a well known corollary of the equidis 0

tribution theorem.

Theorem 2.2 (Dense Curve On a Torus).SupposeT? = Fig. 6:Tiling of H by copies ofD and the curve

R?= , where s the canonical integer lattice = . . N
f(m;n)jm;n 2 Zg. Let be a straight line with irrational slope C. Comparison With Space Filling Curves
onR?, = R?1 T2 is the projection, then( ) is dense and A space lling curve will be " lling up' the square, i.e.,
equi-distributed off 2. every point of the square is on the curve. A space- lling @irv
must be everywhere self-intersecting in the technicalesémet
i o ) ) the curve is not injective Intuitively, a non self-intersecting
A relatively similar idea can be applied for multiply con-c,rye can never Il up the square as the two have different
nected domains. As shown in Figure 5, the input netWOEBpologies.
in (_a) IS a Iplanar domain witim + 1 boundary components |, oy case, we generate a continuous curve which is non
foi 1; 5 ng where o is the exterior boundary compo-get intersecting on a torus. It does ngo throughall the
nent. The domain is then conformally mapped to an annulygints put it isarbitrarily close to all points — any poinp
with concentric slits in (b), such thap is mapped to the outer js \ithin distance’ of the curve, for" > 0 to be arbitrarily
circle, 1 is mapped to the inner circle,, 1<k  n, are gma)| For a simple domain, since we use four copies to create
mr?\pped to concentric circular arcs. The shortest pathés) fr 5 1orys, our dense curve will visit each point of the original
k;k > 1to o are denoted asi. By taking the complex qomain at most four times. For a domain with holes, we use
logarithm, the annulus irfb) is mapped to a rectangle withy,, copies to create a torus or a multi-torus. Thus a dense
horizontal slits, as shown i(c). Note that, the annulus is cutc e in our construction will visit each point of the origin
along 1, therefore the left and right vertical boundaries of th§omain at most twice. This ensures that the dense curve in the
rectangle are both;. Denote by the rectangular domain ag,jications will eventually visit the entire network andes

B. Dense Curve For Multiply Connected Domain

0
D~ ) ) ) not visit any particular node too often.
The heights, starting-coordinates and the lengths of the
slits (denoted agh;; si; i) respectively) are conformal invari- I1l. THEORY ONMULTI-HOLE DOMAIN

ants of the_sensor network d_omain. In other words these al€The dense curve we construct for app]ications in a sensor
the “ ngeprints” of the domain [1]. There can only be twonetwork domain with holes is simply a “billiard” path in

cases here: the transformed slit domai® (Figure 1). The proof for
1) All of h;;s; andl; are rational. the rectanuIar domain is identical to the case in which the
2) At least one of thén;;s; andl; are irrational. domainD " is a square; which we will assume in this appendix.

The curve we construct is a simple “billiards” path (stagtin Billiards in polygons is a rich and well researched eld with
from the lower left corner of the rectangle) in the rectaagul many interesting open problems (for an excellent survey, se
domainD®. We take a curve by starting from the bottom left?]). Most of the techniques involve the theory of Riemann
corner of D% with an irrational slope. When the path hits &Surfaces, especially Teichmuller theory. In this sectioe
slit, top or bottom boundary ob? it is bounced back. The explain the construction of our curve and use these theories
two vertical sides of the rectangle are identi ed and theveur to derive properties of the curve.
continues at the point from the same height on the left vadrtic

) . ) . . . . Preliminari
side when it exited the right vertical side from. See Figure e |m|n_ar|es )
for details. 1) Notation: Let | denote the unit squaf®; 1] [0;1]. Let
Using techniques from complex dynamics, we can shdy denote the in nite striR  [0;1]. LetS;; 1 i n denote
that: the horizontal slits;S; | 8i. Each slitS; is de ned by a

1) In case 1, a billiards path with irrational slope is dengliPle (ni;si; 1) whereh; is the y-coordinates; is the starting
and ergodic. x-coordinate, and is the lengthlf < 1 x;) of the slit. With

2) Incase 2, the set of initial directions (frof®; »)) which theHabk(J)ve no_’tatlor]I?D: ' ﬁl[ :::.[ SIQ.' we (:ZonSs_lde_lr al t|||ng”
ensure density of the resulting billiards path is measupé y copies olL as shown in Figure <. simiarly, ca
1. ThI.S means th‘?‘t if we pick a_dlrectlon '."’_indomlyi the 1An injective function is a function that preserves distivedts: it never
resulting curve will be dense with probability 1. maps distinct elements of its domain to the same element.
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Fig. 5: Multiply connected domain.

Fig. 7: The Slit Map domair Fig. 8: Tiling of H by copies ofD and the curve
H

S [¢)

S

B. Quadratic Differentials and trajectories

Quadratic differentials play an important role in the theor
of Moduli of Riemann Surfaces. We refer the readerZpofpr
a better explanation of these objects. Here we will only @e n
them and state their main properties.

D Holomorphic Quadratic Differential : A holomorphic
guadratic differential on a Riemann SurfdRés an assignment
of a function ;(z;) on each chart; such that ifz; is another

. _ dz: \2
1 the domain we get by taking copies of a re ectionbf local coordinate, theni(z) = j(z)(g&) . _
(denotedlb) along the x-axis. It is well known ( [?], [?]) that every quadratic differential

on R provides “at” coordinates; coordinates in which the
2) Curve De nition: We construct a curve ;x in the metric of the underlying surface is at (euclidean) everysé
following way. Shoot a ray fronx 2 D which makes an except at nitely many points (corresponding to zeroes &f th
angle with the positive x-axis. The ray then gets re ected &jjfferential), which are also called cone singularities.

Sh

the following boundaries : This metric is locally given by (z)jzjdzj. On the comple-
) ment of these singularities, the coordinate charts( x;y) are

1) ThelineL,; = R f 1g _ such that the change of coordinates on the intersection f tw
2) ThelineLo = R f 0Og (the x-axis) charts are of the fornm !  z+ corz! z+ c. In other

3) Any copy _Of the_S“tCi?‘ » which by de nition is a slit g, the transition functions are translations and récers
of type (hi;si + t1i), wheret 2 Z. in the origin composed with translations. Also, any such at
structure corresponds to a unique quadratic differential.

Let :H ! | be the natural projection map. Lety = ST :
R o ' Furthermore, every quadratic differential naturally des
( .x ).For such a curve with initial direction , one can . . \ : : .
: ) R a pair of trajectories. Ahorizontal trajectoryis a curve for
also denea owF :H ! H which intuitively takes a

. . . which (z)dz? > 0 and avertical trajectoryis a curve for
point z 2 H to the corresponding point on., after one which (2)dz2 < 0

unit of time (assuming unit speed parameterization gf).

Such a ow is calledergodicif the only invariant sets are
(Lebesgue) measure 0 or 1. L@tdenote the origin. We are
mainly interested in properties of.o (which is the curve we
use for our purposes) and ergodicity i6f. For the sake of
brevity, we set = o and = o P=fx2H:x=(s+i+th;);1 i n; 2f0;1g;t2 Zg

1) Saddle ConnectionsFor a more detailed account of
saddle connections, seeq])

Let P be the set of the endpoints of all the slits (including
copies of the original slits). Hence



Letx;y 2 R* andL(x;y) denote the (closed) line segmentig. 9: Decomposing into two curves; one iH and one
joining pointx to pointy. in 9
Saddle Connections: The set of Saddle connectioBsis the H
set of all possible line segments between endpoints of two

distinct slits inH . Formally, — — L/ —
D
S=fL(XYy):x;y2P;x6 yg — Z
Note that in our case, this set is countable. / J—L T —
With this, we have all the building blocks for stating our o
theorems.

I

C. Main theorems

e}
In the following, Q denotes the eld of rational numbers. L i LD 2 - -

Lemma 1: Let hij;si;li 2 Q. Further, let be such that
tan( ) is irrational. Then@ 2 S such that . — —/ —
Proof: By hypothesis(sj+t+ | j;h))2Q Qforallt2 Z
and all 2 f 0;1g. Since all the endpoints of the slits are at
rational coordinates, it is clear that all saddle connectioave
rational slopes. has lines of only two slopegan( ) and . o
tan( ), both of which are irrational. Therefore, cannot 1) In the rational case, we can nd exactly the direction
contain any segment fror8. we need to obtain a dense curve.
Theorem 1: Lethi:si:li 2 Q and be such thatan( ) is 2) Inthe irrati_onal case, picking any direction uniformly a
irrational. Then random, with probability 1 we get a dense curve.
1) is dense i . 3) Ergodicity hgre implies t.hat thel curve we getuni-
. . formly denséan the domainD. This means that on the
2) The ow F is ergodic. ) . .
. , average, our curve will go through any two distinct equi-
3) Letx 2 D;then passes througk at most twice. L . . .
_ radii disks (contained ilD) with almost same frequency.
Proof: The curve has lines of two slopestan( ) and However, this does not imply uniform density in the

_tan( ). The curve on the copy iH contains only the original domain, since the conformal map we use in the
line segments of slop@an( ) and once any such segment is next section does not preserve areas.

re ected, it continues irt? appropriately, as a line with slope

Remarks:

againtan( ) (Figure 3). IV. ALGORITHMS FORDISCRETECONFORMAL MAPPING
Consider the genus + 1 surface obtained by identifying a , ) )
boundary ofD to its corresponding re ected boundary . In this section we go through the computational tools to

In this way, we obtain a “ at surface”, which has a euclideaf€form an input domain to our canonical shape of a torus or
( at) metric everywhere except at nitely many cone singia & multi-torus on which we de ne a dense curve. Our method
ties which occur at the end points of the glued boundaries. Ti§ Pased on conformal geometry. The followm.g theorem lays
charts are naturally de ned from (the embedding bfiLet ~ down the theoretic foundation for our method:

be the quadratic differential associated with this at sttre. Theorem 4.1 (Ahlfors [1] - Slit Conformal Map).

With the above construction, we now get a continuous cungppose  is a planar domain with multiple boundary

V on the at sur‘face. ) o - components@ = f o; 1; ; a0, then there exists a
Consider the “rotated” quadratic differenti@l . One can ynformal map : ! D, whereD is a unit planar annulus

see thatV is a vertical trajectolry qf this differential. Now, \yith concentric circular slits, such tha( o) and ( 1) are
we use a theorem from [?] which informally says that on g,q outer and inner circles of the annulug, \)%: k > 1, are

at surfaceR, a trajectory of any quadratic differential whichconcentric circular slits. Such kind of conformal mappinés
does not contain any saddle connection is dense. Furthermg,rm-que up to a rotation.

ergodicity of such directions was proved ifi].[ Along with

Lemma 1, these prove (i) and (ii). To prove (iii), assume the The discrete algorithms for computing conformal mappings
contrary. If there is a point which  passed through at leastfor arbitrary 2D domain are explained in details below. The
three times, then one of the directionsor ( ) must be pipeline is as follows: 1) Compute cohomology basis; 2)
repeated, which would mean that is periodic; contradicting Compute harmonic 1-form basis; 3) Compute holomorphic 1-
(i). In fact, using the above construction and [?], [?], oaa ¢ form basis; and 4) Compute the slit map.

also prove that Discrete exterior calculus.Similar to all prior work [10], [22],
Theorem2: Let h;;s;;li 2 R. Then the set of directions [23], [32], the network is represented as a discrete tritargu
for which  is dense and ergodic is (Lebesgue) measure 1rimeshM = (V;E;F), with the vertex se¥, the edge seE

the set(0;2 ). and the face sdt. An oriented edge is denoted ps; v;], an



oriented faces i§vi; vj ; vk]. The boundary operator takes the
boundary of a simplex:

@vi;v]

@vi; Vi ; ]
A O-form is a function de ned on the vertex set: V! R. A
1-formis a linear function de ned on the edge setE ! R.
A 2-form is a linear function de ned on the face set E !
R. The discrete exterior differential operator is de ned as

di():=1(@):

If ! is a closed form, thed! =0.

Let [vi;vj] is an interior edge, with two adjacent faces
[Vi;vi;vi] and [v;;vi;vi]. Then the edge weight is de ned
as

Vj Vi,
[Vi;viT+ v wd + [vi vil:

k
i

+cot i ;

Fig. 11:Holomorphic 1-forms basié 1; 2; 30.

wij :=cot
where ,'j is the corner angle at vertexy in the face

- . . .
[Vi;v, ;i If [vi; v; ] is & boundary edge, adjacen{t®;v; ; i Similarly, we computen harmonic functiongy : V! R,

with Dirichlet boundary condition, such that

only, then
wj =cot < fu(vi)) = 0 8y
. . . . fr(vi) = 1 vi2 g
The discrete co-differential operator is de ned as followst : _ _ _
. fk(Vl) =0 V|2@M k
I be a one-form, then is a O-form,
B X _ _ Then let! .k = dg, thenf! j.xgk=1;2; ;N are exact
b (vi) = wij ! ([vis v ]): harmonic 1-forms.
. v ;V_"]ZE . Step 3: Holomorphic 1-form basis. For each harmonic 1-
Iff:v!I Risa har)r?onlc function, then form ! ;, we compute its conjugate harmonic 1-fortn.
f(vi)= o (vi)= wi (F(v) f(v))=0;8v;2V: Xn
Vi v, ] i = i !

Step 1: Compute cohomology basisSuppose the boundary
components of the mesh a@M= o, 1 > n, Where
o is the exterior boundary. Compute the shortest path frpm

The unknownd j g can be computed by solving the follow-
ing linear equation system:

to o, denoted asy as shown in gure 10. Slice the me$h z RN z
along ¢ to get a mesiMy, the path x on M corresponds to i~y = jik i~y
two boundary segments and , on M. De ne a function M k=1 M
fi :Mi ! R, 8 The wedge products can be computed as follows. Let
< +1 vi2 } [Vi;Vvj;vi] be a triangle faceg = [vj; ], § =[v;Vi] and
fi(vi) = 1 Vi2 o, e =[Vi;v;]. Then by direct computation, we get
. iz
0 w62, [ z 1 la(e) ta(e) ta(e)
Assumee2 [ [ ,,thendy(e) = 0. Therefore, the exact N ]! 1M 2= 5 ta(e) ta(g) a8
1-form ofx, on My in fact is a closed 1-form on the original K 1 1 1
meshM . Let ¢ := dx on M, then and
R :
f 1,2, ;g LS 5[ 1(e)! 2(e) cot fy +

i k
form a basis for the cohomology grotpt(M; R). La(g)!2(g)cot i+ a(e)! 2(&)cot |

Step 2: Compute harmonic 1-form basis.Given a closed Let y ;= !+ ! kp_l, Thenf 1; 5; ; ng form the basis
1-form , we can nd a functiongx : M ! R, such that for the holomorphic 1-form group. Figure 11 shows the basis
X for holomorphic 1-forms.
( k*+dad(vi) = wi fo(Qvi;viD+(a(vi) 9(vi)g=0; e . .
viv; ] Step 4: Slit conformal mapping. We then search for a special

) ) ) holomorphic 1-form = | xx «, such that
for all vertexv; in M. Then!  := | + dg is a harmonic 1- 7

form. Thenf! 1;!,; ;! g form the basis for the harmonic Img ( )= xiImg ( D=2
1-form basis. 0 K 0



» we glue two copies of the network along the boundary
segments between; vi and the boundary segments between
Vo; V3. The resultis a topological annulus. The algorithm above
can also handle this case and will map the doubled network
to an annulus. By taking the complex logarithm, the original
network is mapped to a planar rectangle, such that the four
o corners are mapped to the corners of the rectangle.

Doubly connected domain.If the input network is a doubly
connected domain, the conformal mapping gives a canonical
annulus. By taking the complex logarithm, it is attened to
a periodic rectangle. Glue one copy along one boundary, the
result domain is a topological torus.

(a) a 3-hole domain (b) circular slit mapping

V. SIMULATIONS
A. Dense Curve Discretization

The aperiodic dense curve is identi ed as a continuous line
in the universal covering space. To apply it in sensor ndtgjor
Fig. 12: Conformal mapping from the domain to the annulug,is the curve needs to be mapped to a discrete path. There are
mapped to the outer circle; is mapped to the inner circle. various strategies for curve discretization. In our sgttine

suppose there is a sensor netw@kleployed on a continuous
and z z sensor domairR. We compute the dense curve & and
X expand the width of the curve to get a belt regiBn The

i - . XiImg ( i K=051=2:3 on discrete path starts at an arbitrary nal2 B. For a nodeu

(c) horizontal slit mapping ’ (d) cyli er apping

R on the path, we compute its next hop from the set of neighbors
This implies = 2 . Then the mapping is given by  falling inside the belB: C(u) = fuju 2 N (u) andu 2 Rg
zZ, based on a closeness measurement. This will generate a
(z) = expf o discrete path.

A

where the integration path is arbitrarily chosen. B. Comparison with Various Network Covering Approaches

Now we summarize the computation and communicatic%nvéle comptare (I?ur metthd_W'th fatrr]wumber of otger appro_aches
steps involved in the pipeline. at generate a linear ordering of the sensor nodes, salgi,

1) Step 1 C i h | basis. In this st the space lling curves, Eulerian cycles and random walks. F
) Step 1. Compute cohomo 0gy Dasis. In Inis Step We Wik, , e lling curve, we use the Moore curve which covers a
nd shortest paths connecting the interior holes to th

) _ . gquare densely. See Figure 13 for an example. Starting from a
outer boundary. This can be done by a single oodin orner, a space lling curve rst visits nodes nearby exkiitm

starting from the nodes at the inner hole boundar|%§r0ng locality. It also does not handle network holes and
simultaneously. . . . may be disconnected into multiple pieces. An Eulerian cycle
2) Step 2: Compute .hafmor?'c 1-form ba_15|s. In this step Vfﬁves a cycle on the network nodes in which one node may
computen_ harmonic fur_1c_:t|ons, whenmeis the “‘%'T”ber of appear multiple times. We build a minimum spanning tree of
.hOIES.‘ This Uses the D'”Chlet bognc_jary condm_on _and The network, duplicate all the edges to generate an Eulerian
|terat!ve g053|p-§tyle algorithm, similar to the distried cycle. Compared to the aperiodic dense curve, Euleriarecycl
algorithm used in [15]. . . .. also has spatial locality. For random walk, the next hop ef th
3) Step 3: Compute holomorph_lc 1-form basis. Th's Math is chosen uniformly randomly from the neighbors of the
vol_ves completely local operations. Each node will sol €urrent node.
a linear system only on its neighbors. Since Moore curve only exists on a square, in our compatri-

4) Step 4: Siit conformal ”?appmg- This involves only ON&on the networks are deployed on square regions withous hole
round of ooding, starting from the outer boundary.

: . . The sensor nodes are uniformly randomly deployed within
mward. The nodes compu.te their virtual coordinates. the network region, the transmission pattern follows thé un
The algorithm solves sparse linear systems. Therefore gk graph model(UDG). In the experiment the networks have
hoIomorphic differential method is more ef cient qomparted 5;000 nodes with average degrees to have uniformly ran-

the non-linear curvature ow methods. The algorithm haBdIQjom|y generated 0 networks to average out the randomness.
domains with two or more holes. For other cases the algorithm,:igure 14 shows the network coverage percentage as the
is similar. paths move forward. The axis is the length of the path in
Simply connected domain.If the input network is a simply the number of hops, thecoordinate is the percentage of nodes
connected domain, we select four corner vertices on thevered by the path. It is obvious that aperiodic dense syrve
boundaryfvp; vi;Vv2; v3g sorted counter-clock-wisely. ThenEulerian cycles and Moore curves are much better than random



Fig. 13: The Moore curve (source: Wikipedia).

walk in terms of coverage, which is not surprising because
these are well-guided curves, while a random walk is aimless

Since Moore curve is designed to cover the unit square ci
the coverage grows linearly at a fast pace. However,

problem for Moore curve to be used in practice is that:
needs to choose a resolution before the curve starts. If

<4

Fig. 14: Comparison on Network Coverage

L S%! # I$% "$% $% " $

— 1 &H#

gt g

g (
1

resolution is not appropriately selected, Moore curve
miss some nodes when it comes back to the starting pc
Any continuation will not discover new nodes, as shown
the later part of the curve in Figure 14. The Eulerian cy«
can eventually cover all nodes by de nition. Compared to .
the other methods, our approach has a clear advantage &
beginning of the path. Our dense curve sets out to expl
the entire domain in a coarse manner; network coveragt ‘ ‘
improved continuously when the path is longer. & #"

Figure 15 shows the average shortest distance from the set ) ) o

of unvisited nodes to the set of visited nodes, this averaELg' 15: Comparison on Average Shortest Distance from Unvisited
. o . Odes to Visited Nodes
shortest distance criteria measures the locality propefty
the paths. If the path visits most of nearby nodes before
moving to nodes faraway, the average shortest distanceittan s
remain relatively high even though the path visits more sode
Compared to other methods, the average shortest distance of
the aperiodic dense curve drops sharply, which means that th
aperiodic dense curve visits the network in a more global way
than other methods.

To conclude, the aperiodic dense curve, Moore curve and
Eulerian cycle cover the network much faster than random
walk. Compared to the Moore curve and Eulerian cycle, the
aperiodic dense curve is able to quickly sample the whole
network, which gives a good representation of the network in
the early stage.

"#% $% $% !

‘#

$% " $

Fig. 16: Conformal mapping for a network with holes.

VI. DENSECURVE APPLICATIONS

C. Covering Network with Holes Multiple paths and data mule coordination. To gather net-

Sensor networks may have obstacles inside, which leadwork data, one could use multiple data mules simultaneously
holes in the sensor domain. Normal space lling curves likeo speed up the process. To coordinate and collaborate with
Moore curve would fail under such cases, because thosesurgach other, the data mules may need to communicate during
only cover the unit square, and would become disconnectib data collection, which can be expensive or even inféasib
pieces. By performing conformal mapping to map the holéy using aperiodic dense curve we can reduce such coordi-
to slits, the aperiodic dense curve can be used to cover taion efforts. Each aperiodic dense curve would be able to
whole sensor domain. Figure 16 shows a 2-hole network witlover the whole network in a particular pattern, and theinigi
its conformal mapping to circular slits and cylinder. Figur7 pattern is prede ned by the slope and starting position. By
shows the aperiodic dense curve on the network. deliberately assigning slopes and starting positions tthijohel



VIl. CONCLUSION

In this paper we propose the computation of a dense
curve for any planar domain. When walking on the curve

the

trajectory will gradually and densely cover the domain

of interest. This linearization of a 2D network can be useful
for any scenarios that require a logical serial order. Weehop
to develop applications of this idea for data mule plannimg i

our future work.

Fig. 17: A dense curve on the network in Fig. 16.

aperiodic dense curves, the data mules can collectivelgrcov(i]
the whole network such that the overlap between differeriél
paths is small. Figure 18(ii) shows two dense curves startin

from different boundary node®;; O, with different slopes. [3]

Double ruling. Besides the applications for data mule plan-
ning and data fusion, we can also make use of the den&d
curve for in-network storage and retrieval. One scheme f
storing sensor data in the network, called double rulings,
stores the sensor data along a storage curve and retrietzes da

. . . 6]
along a retrieval curve. Data is retrieved when the retheve{
curve intersects the storage curve. Previous double muling
schemes are only designed for networks of a regular shap[%
e.g., the horizontal/vertical lines [17], [27], [31], orqmer
circles (great circles through a stereographic mappind).[2 [8]
When the network has holes, these curve are fragmented by
the presence of holes. Alternative repairing schemes naist %,]
used to reconnect them.

A pair of non-parallel aperiodic dense curves give twh!
trajectories on the network that intersect with each offieose [11]
two trajectories form a lattice on the network, which is very
suitable for double ruling. In particular, for storage cesy
we simply use the lineé : y = kx with slopek. For the
retrieval curves, we use the line : y = x=k, i.e., the line
perpendicular to in the universal covering space. Figure 18(i)
shows the double ruling result from two consum&B to [13]
get the data from the producer trajectory.

[12]

[14]

[15]

[16]

[17]

(i) double ruling. (i) multiple paths.

Fig. 18: Dense curve applications. [18]
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